

Helping Engineers Design NEAT Security Warnings
Rob Reeder, Ellen Cram Kowalczyk, and Adam Shostack

Microsoft
Redmond, WA, USA

{roreeder, ellencr, adam.shostack}@microsoft.com

ABSTRACT
Software engineers who design large systems have a
multitude of concerns to address before shipping their
software. Usability and security are merely two of these
concerns, and usable security is a small slice of those.
Thus, software engineers can only be expected to spend a
small fraction of their time on usable security concerns.
Our team, the Usable Security team in Microsoft
Trustworthy Computing, acts as a central resource for
product teams. We have been working to help them use the
latest knowledge from the usable security community to
design security warnings. Because these engineers have so
many demands on their time, we have had to condense our
guidance into a short, easily consumed form. In fact, we
have condensed it to four letters: NEAT. A good security
warning should be Necessary, Explained, Actionable, and
Tested. With these four letters and the training materials
we have built around them, engineers are able to
comprehend and use the latest usable security results.

INTRODUCTION
Computer users face a barrage of decisions about who and
what to “trust,” and when to be concerned about their
security. These security decisions arise when users initiate
activities like visiting a website, installing an executable
from the Web, or using an application that needs to get
through the firewall. Security decisions are surfaced to
users by a platform – for example, an operating system or a
Web browser. Designers of platforms design the
experience users go through when making trust decisions,
and this user experience can lead users to make better or
worse decisions, depending on how they are designed.

Our team at Microsoft, the Usable Security team, was
formed to help engineers within Microsoft design better
user experiences for making security decisions. This paper
is a part of the story of how we have done that and how we
help engineers today. We believe the approach is likely
usable at other organizations, or by researchers analyzing
the usable security of systems.

DEVELOPING GUIDANCE FOR ENGINEERS
Our team’s first task was to gather the usable security
knowledge that we would encourage Microsoft engineers to
follow. We gathered a group of internal Microsoft experts
in both security and usability to help determine what that
knowledge should be. Initially, the group surveyed the
need for usable security advice by inviting product teams
with plans for security-related features to present those

features to the group and receive expert feedback on the
user experiences in those plans. Through these sessions,
the group learned what usable security questions the teams
needed answers to. Key questions included:

• When is it appropriate to interrupt users with a
warning dialog to ask security questions?

• When presenting a security question to a user with a
dialog, how should the dialog user interface be
designed?

After several of these sessions, the group began an effort to
gather the knowledge to share with teams. To gather this
knowledge, the group drew upon internal and external

usable security research as well as
insights gained from the
presentations by product teams.
Since usable security is still a
nascent field, this process was not
easy; there are many competing
ideas and many gaps in knowledge
that make it difficult to gather a
definitive set of knowledge to share

with engineers. Existing
literature was seen as too
remote from the day-to-day
needs of engineers.

Ultimately, the group produced a paper that captured a
consensus view of the most important aspects of knowledge
about designing usable security warnings to share as
guidance with engineers. The paper consisted of 24 pages,
with 68 items of advice arranged into a hierarchy 3 levels
deep. Having produced the paper, we showed it to a few
engineers to see what they thought. We quickly saw we
had a significant problem: Microsoft engineers do not have
time in their day to read 24 pages and 68 bullet points about
usable security. The list of concerns for a Microsoft
engineer is long; it includes functionality, performance,
reliability, localization, accessibility, backward
compatibility, and maintainability, just to name a few.
Security and usability are both on this list, to be sure, but
usable security is only a tiny slice of usability (most of a
product’s user experience has nothing to do with security)
and a tiny slice of security (security includes both the
development of security-related features and product-wide
activities like threat modeling and penetration testing).
Time for usable security is thus very limited.

Figure 1. Wallet-sized cards
summarizing our first-version
usable security guidance.

So, our team took on a second task to simplify our usable
security guidance. As we confronted this second task, we
also sought to satisfy a second goal: raising awareness of
the importance of usable security. Since the field is still
nascent, not all engineers have been exposed to it. We saw
an opportunity as we simplified our guidance to both make
it easier and faster for engineers to consume and also to
make it more memorable by inventing a convenient
mnemonic. The mnemonic we came up with is a nifty
acronym: NEAT.

NEAT: WHAT SECURITY WARNINGS SHOULD BE
As we reviewed our 24 pages of guidance with its 68 bullet
points, a few stood out as particularly important to help
answer the key questions product teams had about how to
design good security warnings. We took these key points
and condensed them into NEAT. The core message of
NEAT is that a security warning should be:

• Necessary: A warning should only interrupt a user if
it is absolutely necessary to involve the user.
Sometimes, a system can automatically take a safe
course of action without interrupting the user.
Sometimes, a security decision can be deferred to a
later point in time.

• Explained: If it is actually necessary to interrupt the
user with a security warning, the warning should
explain the decision the user needs to make and
provide the user with all the information necessary to
enable them to make a good decision. Since the
Explained part of NEAT is perhaps the most
important, we devised another acronym, CHARGE
US (see below), to help engineers remember what
information to provide in a security warning.

• Actionable: A security warning should only be
presented to the user if there is a set of steps the user
could realistically take to make the right decision in
all scenarios, both benign (where there is no attack
present) and malicious (where an attack is present).

• Tested: Security warnings should be tested by all
means available, including visual inspection by many
eyes and formal usability testing.

For the Explained part of NEAT, we include the acronym
CHARGE US, to represent eight of the key elements of a
well-explained security warning:

• Context: An explanation of the source of a decision
– the application that raised it and the item (file,
website, etc.) the user is being asked to trust.

• Harm: An explanation of the potential
consequences of getting the decision wrong.

• Actions: A list of options the user has.

• Recommendation: A recommendation from the
system about what to do; usually this means
recommending the user choose the safer option.

• Guidance: A series of steps the user can take to
make a good decision, and a clear statement of the
knowledge the user has that might help make the best
decision (e.g., sometimes knowing what the user is
trying to accomplish can help the system make a
better decision).

• Evidence: Any information the user should factor
into their decision; e.g., if this is a decision about
whether to run a program, the program’s publisher is
an important piece of evidence.

• Unique knowledge user has: Warnings often occur
because the engineer expects the user to have some
specific contextual information that the system does
not. That information should be explicitly identified
and communicated to the user either implicitly or
explicitly, e.g., is this network you’re connecting to
at home, at work, or at an airport?

• Semantics: A clear statement of what will happen
for each option the user may choose.

To promote our NEAT guidance, we have developed
training materials to help engineers remember NEAT and
dig deeper into the details of our guidance if they need to.
We have produced handy wallet-sized cards with the NEAT
and CHARGES (since updated to CHARGE US) acronyms
on each side of the card along with text to explain them (see
Figure 1). We have developed a one-hour talk we deliver to
product teams and an extensive slide deck with detailed
examples that engineers can use on their own. We have a
checklist that engineers can use to ensure they have
followed all of the aspects of NEAT, and we have shared a
bug bar with teams to help them prioritize usable-security-
related work items.

CONCLUSION
Our NEAT guidance is now in use by product teams at
Microsoft. We often teach NEAT to interested engineers.
It can be taught in about an hour, and we find that engineers
remember the acronym, or at least remember that there is an
acronym. In any case, our guidance and training have
raised awareness of usable security at Microsoft. The
NEAT guidance is a scalable way for us to share our
expertise in usable security with product teams, as it gives
them an easy way to remember and apply knowledge from
usable security research.

A key lesson we’ve learned in our experience with NEAT is
that to integrate usable security (or any discipline) into the
software development lifecycle, it is important to make it as
easy as possible for busy engineers to follow the advice we
give them. There is great value in translating the results
from research experiments into actionable takeaways for
engineers. NEAT, along with its associated materials, has
been a great first step in helping engineers follow the tenets
of usable security.

