Helping Engineers Design NEAT Security Warnings

Rob Reeder, Ellen Cram Kowalczyk, and Adam Shostack
Microsoft
Redmond, WA, USA
{roreeder, ellencr, adam.shostack}@microsoft.com

ABSTRACT features to the group and receive expert feedbackhe
Software engineers who design large systems have aser experiences in those plans. Through thessosss
multitude of concerns to address before shippingirth the group learned what usable security questioageams
software. Usability and security are merely twotlibse needed answers to. Key questions included:

concerns, and usable security is a small slicehoké.
Thus, software engineers can only be expected ¢adsp
small fraction of their time on usable security cems.
Our team, the Usable Security team in Microsoft
Trustworthy Computing, acts as a central resourme f
product teams. We have been working to help theentle
latest knowledge from the usable security commutaty
design security warnings. Because these engimeses so
many demands on their time, we have had to condemse
guidance into a short, easily consumed form. bt fave
have condensed it to four letters: NEAT. A goedwity
warning should be Necessary, Explained, Actionahte]
Tested. With these four letters and the trainirgterials
we have built around them, engineers are able tc
comprehend and use the latest usable securitytsesul

INTRODUCTION

Computer users face a barrage of decisions abootant
what to “trust,” and when to be concerned aboutrthe
security. These security decisions arise whensuséiate
activities like visiting a website, installing amxezutable
from the Web, or using an application that needgd¢b
through the firewall. Security decisions are stefh to
users by a platform — for example, an operatingesysor a
Web browser. Designers of platforms design
experience users go through when making trust ibecs
and this user experience can lead users to maker fwat
worse decisions, depending on how they are designed

e When is it appropriate to interrupt users with a
warning dialog to ask security questions?

When presenting a security question to a user aith
dialog, how should the dialog user interface be
designed?

After several of these sessions, the group begaeifart to
gather the knowledge to share with teams. To gdtiie
knowledge, the group drew upon internal and externa
usable security research as well as
insights gained from the
presentations by product teams.
Since usable security is still a
nascent field, this process was not
easy; there are many competing
ideas and many gaps in knowledge
that make it difficult to gather a
definitive set of knowledge to share
with engineers. Existing
literature was seen as too
remote from the day-to-day
needs of engineers.

Figure 1. Wallet-sized cards
summarizing our first-version
usable security guidance.

the Ultimately, the group produced a paper that captuae
consensus view of the most important aspects ofviadge
about designing usable security warnings to shae a
guidance with engineers. The paper consisted qiazes,
with 68 items of advice arranged into a hierarchig&ls
deep. Having produced the paper, we showed it fewa
engineers to see what they thought. We quickly saw
had a significant problem: Microsoft engineersndd have
time in their day to read 24 pages and 68 bull@itp@bout
usable security. The list of concerns for a Miofbs
engineer is long; it includes functionality, perfance,
reliability, localization, accessibility, backward
compatibility, and maintainability, just to name faw.

Our team at Microsoft, the Usable Security teams wa
formed to help engineers within Microsoft desigrtée
user experiences for making security decisionsis paper

is a part of the story of how we have done that famd we
help engineers today. We believe the approaclikésyl
usable at other organizations, or by researcheaty/zng
the usable security of systems.

DEVELOPING GUIDANCE FOR ENGINEERS

Our team’s first task was to gather the usable ritgcu
knowledge that we would encourage Microsoft enginée
follow. We gathered a group of internal Microsekperts
in both security and usability to help determineatvthat
knowledge should be. Initially, the group surveytbe
need for usable security advice by inviting prodieams
with plans for security-related features to prestmise

Security and usability are both on this list, to suge, but
usable security is only a tiny slice of usabilitpdst of a
product’s user experience has nothing to do witusky)

and a tiny slice of security (security includes thdhe
development of security-related features and prodice

activities like threat modeling and penetrationtiteg.

Time for usable security is thus very limited.

So, our team took on a second task to simplify usable
security guidance. As we confronted this secos#,twe
also sought to satisfy a second goal: raising emess of
the importance of usable security. Since the fisldtill
nascent, not all engineers have been exposed Wét.saw

an opportunity as we simplified our guidance tohbwiake

it easier and faster for engineers to consume dswl ta
make it more memorable by inventing a convenient
mnemonic. The mnemonic we came up with is a nifty
acronym: NEAT.

NEAT: WHAT SECURITY WARNINGS SHOULD BE

As we reviewed our 24 pages of guidance with itdéiBet
points, a few stood out as particularly importamthielp
answer the key questions product teams had abautténo
design good security warnings. We took these laptp

and condensed them into NEAT. The core message of

NEAT is that a security warning should be:

Necessary: A warning should only interrupt a user if
it is absolutely necessary to involve the user.

Sometimes, a system can automatically take a safe

course of action without interrupting the user.

Guidance: A series of steps the user can take to

make a good decision, and a clear statement of the
knowledge the user has that might help make thie bes
decision (e.g., sometimes knowing what the user is
trying to accomplish can help the system make a
better decision).

Evidence: Any information the user should factor
into their decision; e.g., if this is a decisionoab
whether to run a program, the program’s publisker i
an important piece of evidence.

Unigue knowledge user has: Warnings often occur
because the engineer expects the user to have some
specific contextual information that the systemsloe
not. That information should be explicitly ideinid

and communicated to the user either implicitly or
explicitly, e.g., is this network you're connectitg

at home, at work, or at an airport?

Semantics. A clear statement of what will happen
for each option the user may choose.

To promote our NEAT guidance, we have developed

Sometimes, a security decision can be deferred 10 gr4ining materials to help engineers remember NEEAT

later point in time.

Explained: If it is actually necessary to interrupt the
user with a security warning, the warning should

dig deeper into the details of our guidance if thegd to.
We have produced handy wallet-sized cards witiNlBAT
and CHARGES (since updated to CHARGE US) acronyms

explain the decision the user needs to make and" €ach side of the card along with text to expllaém (see

provide the user with all the information necesgary

Figure 1). We have developed a one-hour talk igeteto

enable them to make a good decision. Since theProduct teams and an extensive slide deck withilddta

Explained part of NEAT is perhaps the most

examples that engineers can use on their own. &Ve b

important, we devised another acronym, CHARGE checklist that engineers can use to ensure theye hav

information to provide in a security warning.

Actionables A security warning should only be
presented to the user if there is a set of stepsiser
could realistically take to make the right decisiaon
all scenarios, both benign (where there is no lattac
present) and malicious (where an attack is present)

Tested: Security warnings should be tested by all
means available, including visual inspection by ynan
eyes and formal usability testing.

For the Explained part of NEAT, we include the agm
CHARGE US, to represent eight of the key elemefita o
well-explained security warning:

Context: An explanation of the source of a decision
— the application that raised it and the item (file
website, etc.) the user is being asked to trust.

Harm: An explanation of the potential
consequences of getting the decision wrong.

Actions. A list of options the user has.

Recommendation: A recommendation from the
system about what to do; usually this means
recommending the user choose the safer option.

bug bar with teams to help them prioritize usalaeusity-
related work items.

CONCLUSION

Our NEAT guidance is now in use by product teams at
Microsoft. We often teach NEAT to interested ergirs.

It can be taught in about an hour, and we find émafineers
remember the acronym, or at least remember thet then
acronym. In any case, our guidance and traininge ha
raised awareness of usable security at Microsofthe
NEAT guidance is a scalable way for us to share our
expertise in usable security with product teamst géves
them an easy way to remember and apply knowledge fr
usable security research.

A key lesson we've learned in our experience WithAN is

that to integrate usable security (or any discglimto the
software development lifecycle, it is importantake it as
easy as possible for busy engineers to follow theca we
give them. There is great value in translating rigults
from research experiments into actionable takeaways
engineers. NEAT, along with its associated maderizas
been a great first step in helping engineers folloa/tenets
of usable security.

