
Many businesses today make promises like “we take your security seriously,” or “we are secure by design.” That’s great, if your

efforts are centered in engineering, rather than marketing or legal. In this Perspective article, we’ll talk about the growing need

for security engineering, including what, why, where, how and when.

R E A S O N A B L E
S O F T W A R E S E C U R I T Y

E N G I N E E R I N G
A P E R S P E C T I V E F R O M A D A M S H O S TA C K

As you build software, you make tradeoffs between features

and properties such as functionality, cost, time to market,

reliability, usability and more. Making those tradeoffs to

build things is a fundamental goal of engineering work. One

property that had been left out—yet is included more often

with each passing day—is security.

Let’s talk about why that was, and why it’s changing. Before

I do, let me talk about security as a property versus security

as a feature. The distinction is a little subtle, but it’s

important. Let’s take a login box as an example. At the top

of web email providers, there’s a link that says “sign in.” That

sign-in is a feature. It allows Google® or Tencent® to give you,

and only you, access to your email. We can also talk about

the security properties of that login box. It might resist brute-

force attacks, where attackers try to login with one password

after another. It might have few vulnerabilities. A lack of

vulnerabilities is a security property, one shared by many

features. If you’re going to be secure by design, you need to

think about these properties early, so you can design and

build your systems in a secure way.

For a long time, software buyers (primarily governments) asked

for explanations of software security properties, in programs

like the “Common Criteria.” Remarkably, writing about the

software after it was created didn’t lead to secure software.

One watershed event in engineering for software security

properties was the publication of the “Trustworthy Computing”

memo at Microsoft. In that all-hands memo, Bill Gates declared

that security mattered to Microsoft, and followed the memo

with massive investment over more than a decade. (When I

worked for Microsoft, the Trustworthy Computing security

team had several hundred staff, and major product teams

like Windows® and Office had their own security teams, too.)

That effort demonstrated that investment in security

engineering pays off, and more importantly, it does so in

a way that executives can understand: a big, successful

software company keeps spending money on it.

WHAT DOES “SOFTWARE SECURITY ENGINEERING” MEAN?

Adam Shostack is a consultant, entrepreneur, technologist, author and game designer. He’s a member
of the BlackHat Review Board and helped found the Common Vulnerabilities and Exposures (CVE).
He’s currently helping a variety of organizations improve their security, and also advises start-ups as
a Mach37™ Star Mentor. While at Microsoft®, he drove the Autorun fix into Windows® Update, was the
lead designer of the Security Development Lifecycle (SDL) Threat Modeling Tool v3 and created the
Elevation of Privilege game. Adam is the author of Threat Modeling: Designing for Security1 and coauthor
of The New School of Information Security.2

© 2018 ISACA. All Rights Reserved.

1	Threat Modeling: Designing for Security, John Wiley & Sons, Inc., USA, February 2014,
	 https://www.wiley.com/en-us/Threat+Modeling%3A+Designing+for+Security-p-9781118809990

2	The New School of Information Security, 1st Edition, Pearson Education, USA, April 2008,
	 http://www.informit.com/store/new-school-of-information-security-9780321814906

https://www.wiley.com/en-us/Threat+Modeling%3A+Designing+for+Security-p-9781118809990
http://www.informit.com/store/new-school-of-information-security-9780321814906

2 R E A S O N A B L E S O F T W A R E S E C U R I T Y E N G I N E E R I N G

© 2018 ISACA. All Rights Reserved.

WHY YOU NEED SECURITY ENGINEERING

WHERE YOU NEED SECURITY ENGINEERING

If your business is a technology business, then you know

software is essential to your products or services. (I use the

term “product” to mean “the stuff you sell”—so even if it’s a

service, I’m going to call it a product, and ask your forgiveness.)

Now if your business doesn’t think it’s a technology business,

well, I’m not going to tell you you’re wrong. I’m going to let

web browser creator and venture capitalist Marc Andreesen

do that. He famously said, “software is eating the world.”

What he meant is that it’s hard to compete when you have

humans doing work that computers can do. The computers

are faster and cheaper. Even if applications are not directly

sold to customers, there is still potential for fraud and abuse

if those applications are not architected for robustness and

engineered with reliability in mind.

So, even if you don’t see your business as a software

business, you now have software at the heart of what you’re

doing, and that’s where your security efforts need to be.

Security is an important property (whether the business is

technology based or not), one that must be considered in

all new technology deployments: systems, applications,

mobile apps and so forth. Impending laws like the EU General

Data Protection Regulation (GDPR)—which applies to any

organization that offers goods or services in the EU—will

require security engineering.3

There are three places within your organization where you can try

to meet your software security needs, and two of them are wrong.

I’ll start with those, and then talk about choices you can make.

The first wrong place is to put marketing in charge. Don’t get

me wrong, I love marketing. Would you believe, I think marketing

is tremendously important? Really, you want to get the word

out about what you’re doing, how your product helps people

solve the problems they face. And marketing can tell the world

that your product is secure. In fact, one manufacturer of home

networking products promoted the security of its routers on

the company’s website, which included materials headlined

“EASY TO SECURE” and “ADVANCED NETWORK SECURITY.”

This anecdote stems from a January 5, 2017 press release

in which the FTC announced that it was suing, in part

because “the company failed to take steps to address

well-known and easily preventable security flaws.”

The second wrong group to have in charge of your security

is legal. Now, lawyers are absolutely essential to help you

understand how the FTC’s enforcement power relies on

doctrines of unfairness and deception, and how that

enforcement power differs from regulatory power. (I might

be wrong about that—you know what to do. And no! Don’t ask

Facebook. Ask your lawyer.) I believe that lawyers are best

suited to give you legal advice. Key words: legal advice. That

is, they advise you about the law. Sometimes, that’s simple:

if you kick puppies, you will, deservedly, go to jail for animal

cruelty. Other times, it’s a lot more nuanced. Should you put

the words “Advanced Network Security” on your product when

it doesn’t have advanced network security features? Probably

not. But what should you do? There are lots of standards,

but they’re imprecise.

The answer is that you need to engineer for security. Marketing

can tell you if the features are competitive and meaningful

to customers. Legal can tell you that your new feature might

violate the GDPR. But your approach to security needs to be

grounded in engineering working collaboratively with business

teams and even customers.

3	 For more on GDPR, see ISACA’s resources and tools at https://www.isaca.org/info/gdpr/index.html.

https://www.isaca.org/info/gdpr/index.html

3 R E A S O N A B L E S O F T W A R E S E C U R I T Y E N G I N E E R I N G

HOW TO DO SECURITY ENGINEERING
Security engineering is a big, complex topic, and there’s a lot of advice out there on how to do it. A recent speech by Suzanne

Schwartz of the FDA laid out an approach that’s worth thinking about (even if the Food and Drug Administration does not oversee

your business). Schwartz said that your security should be comprehensive, structured and systematic.4 That’s a powerful framing

of the goals. I’m going to stay at the high level for a moment, and talk about each of them, then get specific about how to execute.

Strategy: Comprehensive, Structured and Systematic
You can view these three goals as tests: Is my program

comprehensive? Is it structured? Is it systematic?

So, what is a comprehensive program? It’s one that covers

everything you do. You cannot cover only products where

there’s a “clear and present danger,” the “high risk” products,

or “ones that have hired a security person.” You probably

can, and should, devote more resources to the first two sets.

Maybe the third hired a security person because someone

“had a bad feeling about this.” You cannot say, “Bob, it’s ok,

we understand that your team likes to ‘move fast and break

things,’ so sure, just skip fixing your security bugs.” (Well, you

can. Maybe you should have that lawyer advise you, first.)

Turning to structure (defined by the Oxford English Dictionary

[OED]5 as “the arrangement of and relations between the parts

or elements of something complex”), do you have defined steps

with inputs and outputs, responsibilities and escalation paths?

Do you record those decisions and review them from time to

time? Now, a structured program doesn’t need to apply the same

detailed actions to each thing it looks at. For example, you can

create a risk management process in which steps for managing

people’s highly sensitive data are more rigorous than your process

for managing their cat videos. If one step is “use static code

analysis” then you could say, “for high risk projects, all severity 1 and

2 issues must be fixed; for low risk projects, severity 2 issues must

be triaged.” Whatever decisions you make, the process itself still

needs structure, and that structure can’t depend on which side of

the bed you woke up on. It needs to integrate with the work you do

to build products. (This has long been a crusade of mine. Reports

get less attention from engineers than bugs or tickets. When I was

responsible for the Microsoft Threat Modeling tool, it had one-click

bug filing. Our team’s first open source release was a plugin

layer so that it could file bugs in a wide variety of other systems.)

Structured and systematic are closely related, and thus it’s

interesting to see both in Schwartz’s recommendation.

Systematic means (again per the OED), “done or acting

according to a fixed plan or system; methodical: a systematic

search of the whole city.”

So, where structure is about integration into development, being

systematic means that security is part of the whole product

cycle, from concept through delivery to end of life. It’s a part of

every agile sprint. That said, the security work you do at each

stage is different. As you conceive of the product, you threat

model to think about what can go wrong. As you build it, you

build features to defend against the problems you envision.

You use secure coding techniques—including good language

selection, secure coding and static analysis—to ensure that you

don’t accidentally add problems. You might use the Open Web

Application Security Project (OWASP) top ten, dynamic analysis

software testing (DAST) or fuzzing in testing. As you operate,

you watch for problems, and you give people who find security

problems an easy way to report them to you, confident that

they won’t be sued. Maybe you even reward them with a “bug

bounty.” You also keep an eye on your platform and stack to

catch vulnerabilities in the open source or commercial libraries

and platforms you use. And when it’s all done, you light a match

and burn the data you no longer need.

All this work—structured, systematic and comprehensive—

needs to be grounded in engineering. It can be driven by

someone in engineering or in security, if “security” is

organizationally elsewhere. If the security person or lead doesn’t

have close ties into product engineering, then the role could

be understood as raising security concerns, and not worrying

about shipping, etc. If they are inside engineering, then they may

get pressure to sign off on issues that should be escalated.

© 2018 ISACA. All Rights Reserved.

4	 Miliard, Mike; “FDA exec to medical device manufacturers: ‘Bake security into the design’,” Healthcare IT News, 13 September 2017,
	 http://www.healthcareitnews.com/news/fda-exec-medical-device-manufacturers-bake-security-design

5	 Oxford English Dictionary, “structure,” Oxford University Press, United Kingdom

http://www.healthcareitnews.com/news/fda-exec-medical-device-manufacturers-bake-security-design

The work to secure product engineering is usually packaged

as a secure development lifecycle (SDL or SDLC). There are

waterfall and agile variations, and each organization customizes

what each step entails for itself.

To get started, you need managerial and technical proof points.

To date, we’ve been talking at a management level. To convince

software engineers to do security work, you need to start with

the understanding that they’re already too busy. Their default

argument will be “What do we stop doing?” or “How much

longer should we take?”

The answer is that lots of agile teams spend time up front in

ways that let them move faster. They engineer build pipelines

rather than copying VMs to production, so that they can always,

perfectly, spin up a new one. They write test code to help them

find problems. Each of these involves work that lets you move

faster, and similarly, energy invested in software security will

reduce future unplanned work: It will reduce last minute pain

when penetration testing discovers security flaws; it will

reduce the pain of an outsider finding a bug and generating an

emergency response, full of unplanned work.

The technical proof you’ll need is that the work finds important

bugs. There have been two good starting points for that, fuzzing

and threat modeling. Fuzzing means sending random input

to a program, to see what breaks. It works remarkably well on

programs written in C and C-like languages. If you’re using one,

setting up a fuzzer can be low effort and high reward. But with

more modern languages, fuzzing doesn’t work as well. Threat

modeling will likely work, and find good bugs.

Threat modeling means a set of structured techniques to

address four key questions about a project:

	 (1) What are we working on?

	 (2) What can go wrong?

	 (3) What are we going to do about it?

	 (4) Did we do a good job?

The easy way to get started with threat modeling is to get a

copy of Elevation of Privilege. It’s a game I created while at

Microsoft to teach people how to threat model.6

To me, threat modeling is at the core of security engineering.

It enables you to know if you’re being comprehensive and

systematic. If you don’t have agreement on what you’re

working on, then perhaps there’s a dev team adding some

blockchain to your product. How would you know if you haven’t

drawn a picture? If you don’t know what can go wrong, how

can you claim to be systematic about addressing it? (The tie

to structure is not as fundamental, but good threat modeling

relates to choices about what defensive features you’re going

to build or deploy in a structured way.)

FIGURE 1: Secure software development process model at Microsoft

Source: Microsoft Security Development Lifecycle (SDL) – version 5.2, “Introduction,” Microsoft Corporation, USA, 2012,
https://msdn.microsoft.com/en-us/library/windows/desktop/cc307406.aspx. © 2012 Microsoft Corporation. All rights reserved.
Licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported, https://creativecommons.org/licenses/by-nc-sa/3.0/

4 R E A S O N A B L E S O F T W A R E S E C U R I T Y E N G I N E E R I N G

Secure Development Lifecycle

© 2018 ISACA. All Rights Reserved.

6	 See details at https://www.microsoft.com/en-us/download/details.aspx?id=20303 or https://www.threatmodelingbook.com/resources.

Core security
training

Establish security
requirements

Establish design
requirements Use approved tools Dynamic analysis Incident

response plan Execute incident
response plan

Create quality
gates / bug bars

Analyze attack
surface

Deprecate unsafe
functions Fuzz testing Final security

review

Security & privacy
risk assessment Threat modeling Static analysis Attack surface

review Release archive

TRAINING REQUIREMENTS DESIGN IMPLEMENTATION VERIFICATION RELEASE RESPONSE

https://msdn.microsoft.com/en-us/library/windows/desktop/cc307406.aspx
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.microsoft.com/en-us/download/details.aspx?id=20303
https://www.threatmodelingbook.com/resources

Also contributing to this article: Larry Marks, Tara Singh, Michael Krausz, Meenu Gupta, Krishna Seeburn and David Vohradsky

DISCLAIMER

ISACA® has designed and created Reasonable Software Security Engineering (the “Work”) primarily as an educational resource for professionals. ISACA makes no claim

that use of any of the Work will assure a successful outcome. The Work should not be considered inclusive of all proper information, procedures and tests or exclusive

of other information, procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific information,

procedure or test, professionals should apply their own professional judgment to the specific circumstances presented by the particular systems or information technology

environment. Authors of Perspectives provide their views, observations and opinions and do not represent the views, observations or opinions of Information Systems

Audit and Control Association, Inc. (“ISACA”). ISACA does not guarantee or warrant the accuracy, adequacy, completeness or suitability of Perspectives for any purpose.

ISACA accepts no responsibility or liability for Perspectives.

FOR MORE INFORMATION, GO TO: HTTPS://WWW.ISACA.ORG/SHOSTACK-PERSPECTIVE

RESERVATION OF RIGHTS © 2018 ISACA. All rights reserved.

5 R E A S O N A B L E S O F T W A R E S E C U R I T Y E N G I N E E R I N G

© 2018 ISACA. All Rights Reserved.

WHEN TO DO SECURITY ENGINEERING
When to get started? There’s no time like the present. If you’re just starting to engage in software security engineering, focus

on a single product, and, if you can, a product that’s still in its early days. That way, you can learn what works for your engineering

culture and then roll it out to additional products.

CONCLUSION
The world is changing rapidly. The way you secure your products needs to change as well; it must be executed as security

engineering: a comprehensive, systematic and structured approach that meets the new and evolving needs of the business.

We have learned how to do software security engineering. That’s not the same as saying it’s easy to do, but we know how to

threat model, how to scale threat modeling and how to use it to drive that comprehensive, systematic and structured approach.

https://www.isaca.org/Shostack-Perspective

