Towards a Taxonomy of Network Security
Assessment Techniques

Adam Shostack, Scott Blake

BindView Development
{adam|blake}@netect.com

July 2, 1999

Abstract

Vulnerability assessment tools are coming into widespread use, but the
methods that they use are not well understood. We present a taxonomy
of methods for testing if a target is vulnerable to a particular attack.

1 Introduction

Network security testing tools, such as SATAN, have existed for several
years, and are coming into wider use as an expected component of a pen-
etration test or security audit. However, the capabilities and limitations
of these tools are poorly understood outside of the tiny, separated groups
working on the tools.

As such, the field of testing for network vulnerabilities is one that
has not received much attention from the scientific community. A re-
cent mailing list discussion [Bugtraq] shows that even in a highly skilled
group of security practitioners, the workings of these tools are not widely
understood.

This paper attempts to bring order to the methods for algorithmicly
determining vulnerability to known problems. We use vulnerability in a
loose sense which includes not only software design errors and implemen-
tation flaws, but also misconfigurations and questionable user decisions
(such as using a weak password). We provide an understanding of the
issues and difficulties that arise in a devising and deploying a test or set
of tests for a given vulnerability, and also offer up a set of terms that can
be used to unambiguously describe a given test, allowing practitioners to
more easily debate and discuss their merits. We limit our investigations
to that set of problems which can be identified without credentials.

Note that we do not offer a taxonomy of attacks or vulnerabilities here;
we are concerned with means of finding vulnerabilities, not the vulnera-
bilities themselves. We do use a few specific vulnerabilities to illustrate
various limitations of methods of testing. We include an appendix giving
an overview of a few vulnerabilities used in examples in the text.



In section N, we offer some terminology. In section N+1, we discuss
means of finding vulnerabilities by testing for them. In section (N+2),
we discuss the evidence for/evidence against connundrum. In section (N
+ 3), we discuss means of finding vulnerabilities that do not involve ac-
tual testing for the problem. The paper closes with some comments on
credentialed vs. non-credentialed assessment methods.

We will present the broad areas of assessment by exploitation and by
inference. Assessment by exploitation consists of fully or partially ex-
ploiting the problem, and drawing conclusions from observations made.
We show that there are two ways to make observations about an ex-
ploit, and how they are useful in different situations. We also discuss
issues of attempting to identify software before or during an exploit, the
need to completely exploit a problem, and denial of service issues in ex-
ploit testing. In the inference analysis section, we will explain the use of
banners and other identifying characteristics that allow assessment to be
performed without exploiting the problem, as well as the use of timing
and statistics.

2 Terminology

The field of testing for vulnerabilities has recieved little formal attention,
and lacks a precise set of terminology. We offer some definitions of terms
as we use them at Bindview.

Vulnerability A design flaw, defect or misconfiguration which can be
exploited by an attacker.

Problem A synonym for vulnerability, less loaded with pre-conceptions
about its meaning.

Test An algorithm for determining if a vulnerability is present in the
tested system by taking advantage of the vulnerability.

Inference An algorithm for determining if a vulnerability is present in
the examined system without taking advantage of the vulnerability.

Check A check is a test or an inference that finds a vulnerability. Checks,
without a modifier, are the union of the set of tests and the set of
inferences.

Banner check A banner check is a check which relies on a banner pro-
duced by a server daemon in its algorithm.

Credentials A username or password needed to access a service is con-
sidered a credential. This can include UNIX login access or the
ability to call NT APIs over the network.

3 Testing Methods

The most obvious and apparent way to go about finding if a system has
a particular problem is to attempt to exploit it. However, this is only one
possible method for finding problems, and there are often difficulties with
it, ranging from the visibility or parsability of the result to the effect of
actually running an exploit against the target system.



3.1 Testing by Exploit

Testing by exploit involves using a script or program designed to take
advantage of the vulnerability. This test code is often similar to exploit
code that demonstrates the presense of a vulnerability, however, it will
usually simply return a “RISK” result to its caller, rather than a root
shell. There are exploits that do not return anything, but instead leave the
targeted system in a vulnerable state, by, e.g., putting a plus in the rhosts
file. The user must take a seperate action to determine if a vulnerability
was exploited. This differentiator leads to two noticably different sets of
tests; those whose result can be directly observed have different reliability
characteristics than those which must be indirectly observed.

3.2 Possible distinctions

We considered distinguishing between directly observed ezploitation, and
indirectly observed exploitation. The directly observation set find their
risk conditions within a the network connection or connections needed
to exploit the problem, while indirectly observed exploits use additional
connections or listeners for their data. This distinction turns out to be
very hard to use in practice, as there is no simple defining line that we
have found to make sense; there is, rather a continuum with ICMP and
UDP checks being hard to define as direct or indirect.

3.2.1 Parsing Results

There is a set of cases in exploit tests where the result of the exploit
is available, but hard to automatically parse; this happens with many
CGI problems, since the web server is partially in the loop, and different
web servers interpret output differently, for example, possibly requiring
a “Content-Type:” line before sending any data to the client. There are
also cases where evidence can be found directly or indirectly; an excellent
example is the Sun telnet DOS attack, which can be indirectly observed
through a new connection, and can also be directly observed by timing
analysis of the ACK packets sent. Which is preferable for a deployed test
typically depends on implementation related issues.

If the evidence of an indirectly observed exploit is unreliable, it may
benefit from being run several times against a target, so we can use sta-
tistical techniques to increase our confidence that our observations are
accurate. There is also the issue of when an attack takes effect; some
tests for the majordomo bug referenced will go through the mail queue,
which may be quite backed up. Thus, the commands may not execute
for several hours or days while a mail queue empties, leading to a test
that takes an extended period to complete. If our host happens to receive
mail, it may be possible to test the time it takes for a message to cycle
through the queue, but this time may vary substantially.

Lastly, there are exploits for which evidence can only be found through
timing analysis; many denial of service attacks against NT services which
absorb CPU time require .

can be tested for reasonably reliably through the use of timing analysis.



3.3 The Robustness Principle

The number of poor or non-compliant implementations of various services
makes testing a tricky business.

Many systems will respond in unusual ways to standard requests, fail-
ing to be conservative in what they send. (Other, robust implementations
lead to these problems not being noticed in normal use.) For example, the
CERN HTTPD 3.0 will return a “500 Internal Error” message to mean
access denied. !

Some tests will unexpectedly crash systems; HP printers are fairly
notorious for being unable to survive a portscan. These problems are in
fact the opposite of the previous paragraph: These systems are not liberal
in what they accept. may well relate to the failure to comply with the
robustness principle problems found in [Belovin].

3.4 Banners in Exploit Tests

For those tests which actually perform an exploit, there is often a temp-
tation to improve its accuracy also invoking inference methods. This may
improve a check’s accuracy, but it reduces its ability to find related vul-
nerabilities. Take for example the asp-dot problem. This problem was
first found in an early version of Microsoft’s Internet Information Server.
It was later re-invented in the Windows version of the Apache web server.
A test that attempts to improve its accuracy by checking that it has re-
ceived a ‘Server: IIS’ header may do so at the expense of reliability, since
its test will not discover that Apache gives up files in the same way. This
difficulty is based on a lack of clarity in defining what a vulnerability is. If
the vulnerability being looked for is “the willingness of the server to give
up files ...” versus “the willingness of the IIS web server to give up files,
.7 then which test is appropriate becomes clearer. Unfortunately, its
not clear which of those statements of vulnerability is more appropriate.
On the other hand, if a test only runs against targets against which it
has been checked, then the probability of unintentionally denying service
is much lower.

3.5 Denial Of Service Testing

For assessing vulnerability to denial of service attack in daemons which
run on their own, vulnerability can be detected by crashing them, and
observing that the port that they were bound to is no longer accept-
ing connections. This has a number of potential difficulties, including
but not limited to the possibility that an intrusion detection system has
instrcuted an firewall between the tester and the target to block the con-
nections. This class of problem actually affects many indirect observation
techniques, but is most problematic when attempting to reconnect, since
the defensive software may be blocking your re-connection attempt, which
may be difficult to distinguish from the system not responding.

IWhile concealing the existence of private files is an admirable goal, the HTTP specifica-
tions define a number of responses specifically to indicate that access is not allowed.



Much preferable is careful examination of the network level behavior
which terminates a connection. Is it done with a RST or a FIN? The RST
generally indicates a program failure on the remote side. RST + push is
often seen when a daemon dies, even one from inetd or with other moni-
toring service. It is more reliable to directly detect the abnormal behavior
we cause than its secondary effects, such as an ICMP port unreachable
message in a re-connection attempt.

Note that there are problems which are not traditionally classed as
denial of service attacks, but whose tests have that effect on the service
they exploit. An example of this can be seen by sending an HDS X
terminal an empty UDP packet on port 161 [Shostack], which can crash
the xterminal. For these cases, a check may choose to use a less reliable
method in the interests of reducing the effect on the examined system.

Other tests, particularly those using a direct exploit technique, may
crash a daemon or service as a by-product of the check (e.g., many buffer
overflow attacks). Clearly, the impact of a test must be considered when
selecting a testing technique, particularly when production systems may
go down or become unresponsive. In practice, this is done on a case-by-
case basis.

Some tests may also result in disabling the entire system rather than
just a single service. These have the difficulty that the system under
test may crash or become unresponsive for reasons unrelated to the test.
Such reasons may include a router crash, a sudden and extended burst of
network traffic causing loss of UDP or other unreliable traffic, a machine
being rebooted, etc. This is a different matter when the crash of the
machine is a confounding variable and an expected result of a test. When
it is a confounding variable, it may be possible to build other tests into
a check to isolate it. However, when the goal is to crash the target, only
repeated testing of the attack can assure accuracy. However, there are
substantial practical difficulties in doing this.

4 Coming to Conclusions

For a check to be useful, there must be some sort of reporting at its end.
The check algorithm should assess the evidence, and provide results. (It
would be possible to build a system where all the evidence is presented to
the user for assessment, but it seems a rather mechanical task which can
reasonably well be automated.)

For any check which we perform, we can either work from a hypothesis
and attempt to disprove it, or we can look for a preponderance of evidence.

When disproving a hypothesis, there are essentially two types that can
be used; that of risk assumed , and that of safety assumed. For either,
we must seek to disprove the hypothesis. The disproving safety-assumed
hypothesis is preferable when testing a directly observed exploit, because
the exploit can easily be shown to be successful.

If the exploit is observed indirectly, we should assume risk, and seek
ways to disprove it. One route to disproving is to send the commands
that should exploit the hole, and to see an error message. Since we have
been shown the error, we can not have succeeded (except in the face of



a deceptive system, such as the DTK [Cohen]). For example, we can dis-
prove the existence of the majordomo reply-to hole if we can demonstrate
that majordomo is not installed. We can show that majordomo is not
installed by showing that there is no mail server on the host. If there is
a mail server, we may be able to show that it will not accept mail for
majordomo. For the glimpse cgi, we can disprove the existence of the
hole by proving that the cgi is not installed, or that there is no web server
present. The assumed risk model may be contrary to user expectations,
since if a check reports a vulnerability, the user seems to expect that the
check has found evidence of that.[Bugtraq]

Some words about preponderance of evidence, and multiple-method
tests tk here.

5 Inference Methods

Several of the early examples of network testing programs, including SA-
TAN, made extensive use of version checks. Version checks are those
checks which rely on a version identifier provided by a server, possibly in
response to a request. The version is compared to a known safe or known
vulnerable version number. Version checking is the simplest member of
the inference checking family. These methods do not actually exploit
problems, but look for evidence that they may be exploited. Methods
for examination by inference include, but are not limited to, versioning,
program behavior, OS stack fingerprinting and timing.

Behavioral analysis can shine when, for whatever reason, we want to
disprove a risk hypothesis. In these cases, it is reliable to show that a
program behaves in ways which would require substantial changes to the
source of the vulnerable version. This allows us to infer that the software
we are looking at is not the software in which the risk is present. This is
not quite as reliable as exploit techniques, but it is less intrusive.

This technique can be useful when checking for a new problem whose
details have not been made public; the benefits of keeping exploitation
information private may outweigh the reliability issue. In addition, these
techniques are useful for checking vulnerability to denial of service attacks,
since they are less intrusive, and one can check a number of issues between
reboots.

Lastly, these techniqules are very useful for quickly scanning a large
number of targets, since the computational and network requirements for
inference checking tend to be very low.

5.1 Versions

Versions are an extremely simple sort of identifying behavior. Many pro-
grams will offer a banner to identify themselves. Sendmail and wu-ftpd
are good examples of this. Sendmail will, by default, reveal not only its
version, but its configuration file information, as well as the time. Wu-
ftpd reveals its version in gory detail. Other programs, such as many
web servers, will reveal their version information in response to a simple
anonymous query.



Version checks are a low impact way to find evidence of a vulnerability,
but it will fail to function if the banner has been changed, causing a false
negative. The ease of changing banner information varies from program
to program. With sendmail, one must merely brave the configuration file,
whereas with ssh, one must change the code.

The use of banners as a means to infer a problem will, like most infer-
ential methods, fail to catch programs that, unknown to the check writer,
fail in similar ways across programs.

5.2 Port Status

Knowing what ports are open on a system can be useful in and of itself.
A large number of portscanning tools have been written (nmap, firewalk).
We note that techniques for distinguishing between a firewalled and a
closed port have been developed. In addition, it is feasable to discover
when a port has access control on it.

There are certain vulnerabilities which can be reliably infered from
the status of a port. Many of these vulnerabilities relate to policy vio-
lations. For example, if there is a policy that only approved servers can
offer web service, then the presence of an open port 80 is a vulnerability.
Alternately, if all systems are required to run SNMP network management
software, then the SNMP port being closed is a problem. These checks
are refered to as port status checks.

5.3 Protocol Compliance

If a port being open is not quite enough to determine a vulnerability exists,
then it may be desirable to simply excersize the server, for example with
a request for status, or a simple information request. This may be useful
with finger, where a banner that announces “Finger is not available” may
be acceptable, but actually serving up information is not.

5.4 Behavioral Analysis

There are behavioral analysis methods which are more complex than ver-
sioning or determining port status.

There are many commands in a protocol whose output is distinguish-
ing. Optional or new commands that are outside the requirements for
interoperability are a fertile ground for this. For example the response to
the SMTP help command is distinctive for families of mail server code,
although it usually will not allow a test to distinguish versions.

Behavioral analysis can also reveal information about the configura-
tion of a system. Some of these ways, such as tcp_wrappers delaying the
response to a connection for a DNS double reverse lookup, are quickly ap-
parent. Others are more subtle, such as web servers revealing information
about index files being on disk or generated on-the-fly by the headers that
they produce.



5.5 OS Identification

An outgrowth of this is the observations from the authors of Queso and
others [Fyodor] that host operating systems can be identified by their
behavior in responding to out of spec or simply bizarre combinations of
TCP packets. ((This section to be expanded.))

5.6 Timing Data

The use of timing data to detect vulnerabilities is relatively unexplored
currently. However, there is a set of denial of service attacks that consume
CPU which can be effectively tested for in this way. Timing analysis can
also be used to determine if the su command in Solaris (before 2.5.1) has
been given the correct password. It can also be used in many cases to
discover that account lockout has been invoked, that certain files do not
exist, that tcp wrappers are in use, etc etc.

I suspect it will be a fascinating area of research into understanding
the behavior of remote programs, if not as reliable as a direct exploit.
Note that it may be used to reveal RSA keys over the network, [Kocher]
but that this is not a fast technique.

5.7 Reliability and Accuracy of Inference

Deciding when to use inference is a matter of strong and ongoing debate,
with various authors and readers in strong disagreement. In practice,
these disagreements are settled by research and testing into the particular
vulnerability, and seeing how reliable the inference method seems to be
on a variety of test platforms.

Assuming the designer of a test has done proper research to determine
if an inference method is appropriate, these methods are still unlikely to
discover that someone has used a non-standard patch to close a problem,
potentially reducing the accuracy of a check. Further, as noted, the check
will not find similar problems in other implementations; this may or may
not be a reliability issue, depending largely on how the vulnerability be-
ing checked for is defined. As the definition becomes more precise and
narrower in scope, the inference becomes more reliable, as other imple-
mentations are likely to be defined as out of scope.

6 Credentials and Tests

The area of testing for vulnerabilities by sending packets is a useful one,
however, it excludes two large classes of vulnerability tests — those that
can be done with credentials, and password cracking.

The vulnerabilities and methods discussed above generally do not re-
quire any more access than IP connectivity to the target machine. How-
ever, many attacks are launched by users with shell access (UNIX) or
resource access (NT) and aim to promote the user to root or Administra-
tor either permanently or for the purpose of running a command. Such
vulnerabilities are often more difficult or impossible to check for from a
remote, unprivileged location.



Furthermore, testing is greatly aided by having root or administrative
access to the target system. This allows the testing processes to examine
the system in the most unobtrusive and reliable way. Unfortunately, if im-
plemented, this storing of credentials and passwords may make the testing
platform itself a fat target since it holds the credentials for accessing the
target machines. Even storing user credentials may draw attackers. Com-
promising the credential data would allow an attacker to masquerade as a
different user, at least, possibly as a user known to be held by the testing
system and possibly as a root or administrative user.

Clearly, the security ramifications of the testing process itself and stor-
ing the results of the process must be carefully considered by system de-
signers and end-users alike. When the testing system holds the keys to
other systems, the security of the testing system becomes very important.
A well-designed testing system will include integrity tests of the system
itself. Otherwise, testing for vulnerabilities may be more dangerous than
leaving the systems open.

Despite the advantages to the vulnerability assessment and in addition
to the risks of storing credentials, organizational factors may play a role
in the difficulties of testing with credentials. Particularly in large organi-
zations, the persons charged with assessing the security of a network are
often not the same people who have control of the network. Obtaining the
credentials for the persons controlling them may pose its own challenges.

We do not consider such things as anonymous (for FTP), null or guest
(for SMB) or public to be proper credentials, but well known tokens.

6.1 NT

On NT systems, many native calls can be used either on the local or a
remote system. Some of these calls require some user credentials and the
results of the call may be highly dependent on the credentials used. It
can be very useful for vulnerability analysis to compare the results of a
call made with anonymous, user, and administrative privileges. Access to
a resource by anonymous persons may not be acceptable, but user access
may be a reasonable or necessary risk. Administrators can make more in-
formed decisions about appropriate configurations when this information
is available.

6.2 UNIX

Most vulnerabilities on UNIX systems that are better assessed with cre-
dentials than without fall into the category of promotion attacks. These
are vulnerabilities that allow users to gain root access. On multi-user
systems where user access typically includes the ability to run code, user
promotion can be a very important class of attack. User access to NT
across a network typically does not include the ability to run code.

6.3 Password Assessment

Obtaining encrypted/hashed passwords for use in password cracking op-
erations is also an area where user or administrative access is highly de-



sirable. To thoroughly analyze the strength of user passwords (which are
extremely important to the overall security of the network), the assessor,
whether human or software, must be able to obtain the encrypted/hashed
passwords. This case also illustrates the extreme importance of the se-
curity of the assessment system itself. In addition to storing credentials
used during the analysis itself, we now also need to store the results in a
secure manner.

6.4 Reliability and Accuracy

Using credentials, particularly administrative or root credentials, greatly
enhances both the reliability and accuracy of tests providing that access
with the credentials can be obtained. For example, if we have the Ad-
ministrator username and password to an NT system, but no access to
a service that accepts these credentials, there is not advantage to having
these credentials. However, if we additionally have code present (or suf-
ficient access to execute code) on the machine which has the credentials,
we gain nearly perfect reliability and accuracy. The disadvantage to this
approach is that it may provide a distorted view of the vulnerabilities
on a machine. For example, ports or services may only be open to the
localhost. Thus, credentialed checks may be answering a different ques-
tion than is typically asked by a network testing tool. In other words,
using credentials tells us what vulnerabilities are available to attackers
with credentials, which is likely different from the vulnerabilities present
for attackers without credentials.

7 Future Directions

This is a large, and still open, area of research, that is being driven largely
by commercial needs. There is much work to be done in the area of multi-
host testing, sniffer augmented testing, credentialed testing, etc. There
is room for additional rigor in defining when various testing methods are
appropriate. There is much that can still be done in defining the role
of behavioral analysis. There likely exist other taxonomies that can be
constructed; some may offer more benefits than this one.

8 Conclusions

We have explained some of the myriad difficulties in creating tests to find
vulnerabilities on IP connected networks. We have presented a taxonomy
that allows classification and discussion of these techniques. Additionally,
we have presented and justified a higher level classification for checking,
that of credentialed vs. non-credentialed. We hope that these advances
will stimulate and encourage public research into the area of automated
assessment of vulnerabilities.

10



9 Acknowledgements

Jordan Ritter, Todd Sabin and Izar Tarandach provided useful and stim-
ulating discussion and feedback on drafts of this paper.

References

[Belovin] S. Bellovin, “Packets Found on an Internet,” Computer
Communications Review, Vol 23, No 3, July 1993, pp. 26—
31.

[Bugtraq] Bugtraq Mailing list discussion, Feb 7, 1999-Feb 18, 1999.

[B94] J. P. Rouillard, Bugtraq posting, 8 Jun 1994, archived at
http://geek-girl.com/bugtraq/1994-2/0360.html.

[Cohen] F. Cohen, “The Deception Toolkit,” posted at
http://www.all.net.

[Cowan] C. Cowan, C. Pu, et al, “StackGuard: Automatic Adap-

tive Detection and Prevention of Buffer-Overflow Attacks”,
Proceedings of the 7th USENIX Security Conference.

[Farmer] D. Farmer, “Shall We Dust Moscow,” 18 December, 1996,
available at http://www.fish.com/survey/.

[Fyodor] “Fyodor,” “Remote OS detection via TCP/IP Stack Fin-
gerPrinting,” Phrack, Vol 54, No 9, 25 December, 1998.

[Kocher] P. Kocher, “Timing Attacks on Implementations of Diffie-

Hellman, RSA, DSS, and Other Systems,” Adavances In
Cryptology — CRYPTO ’96, pp 104-113.

[PHF] CERT Advisory CA-96.06, March 20, 1996
[SATAN] D. Farmer, W. Venema, “SATAN 1.1.1 Documentation”

[Shostack] A. Shostack, Bugtraq mailing list post, Jan 12, 1999,
http://geek-girl.com/bugtraq/1999_1/0160.himl.

Enumeration of Vulnerabilities The vulnerabilities listed here are se-
lected because each is useful to illustrate some point of distinction when
compared against the others. Some of these are interesting because they
are difficult to test for, and we are not aware of a reliable method for
finding them.

phf CGI The phf CGI was a C language example CGI included with
pre-version 1.2 NCSA web servers [PHF] It took no care to ensure
that its arguments were correct before passing them to the system()
call. This allowed an attacker to send an HTTP get request which
included a j;command which would be executed with the UID of the
web server.

Glimpse CGI The aglimpse CGI search tool offered a remote command
execution method similar to that in phf, with the exception that due
to the complexity of the Perl code surrounding the backticks in the
code, the result needed to be sent out via some mechanism other
than display to the web browser.

11



Majordomo Reply-To The Majordomo mail processing package failed
to check its input well, and up to version 1.90 was willing to execute
commands enclosed in backticks in the reply-to address if commands
in a mail message were somewhat invalid.[B94]

Sun telnet DOS The Sun Telnet DOS consists of sending a stream of
D characters to the telnet port of a Solaris machine. Done with
the right telnet option negotiation, this causes the target to slow
substantially.

Smurf A smurf attack, named after the first published exploit, uses a
forged ICMP packet sent to the broadcast address of a network to
cause a storm of packets to be sent to the source address in the
packet. This allows a very small pipeline to the internet to produce
a large amplification, resulting in many more packets arriving at the
target than the attacker sends.

ASP dot This is an attack against some Microsoft web servers that al-
lows an attacker to see the contents of a program file. It works by
appending a ‘.’ to the filename of an executable. When the web
server parses the request, it sees that it does not end in “.asp” and
does not execute the asp, but instead sends the asp file to the re-

quester.

IP Spoofing We include IP Spoofing as a reminder that there are aspects
of insecurity to which you are inherently vulnerable, and short of
protocol revision, there is not a lot you can do about them.

Mail Flood Mail flooding, unlike IP Spoofing, can be defended against.
However, due to the impact of testing, and the fact that a test is not
binary, we choose not to test for mail flooding.

12



