
Effective Patch Management:

How to make the pain go away
Adam Shostack

adam@InformedSecurity.com

Overview

Why patch?
Why is patching so painful?
What can make it easier?
Thinking about risk management
How can we get out of the rat race?

Why Patch?

Vendors issue patches to correct bugs
Performance/Reliability
Security is a subset of reliability

End users apply patches to fix problems
Preventative/Reaction models

Security Patches

Vendors release code
All code has bugs

People find bugs
Sometimes they tell the vendor

Vendor triages, and may release a fix
Some want to install it to forestall problems

Where we are

Why patch?
Why is patching so painful?
What makes it easier?
Thinking about risk management
How can we get out of the rat race?

Why is patching painful?

Patch notification
Inventory & Roll-out
Mobile
Low bandwidth

Lies and Excuses!

The problems of notification, inventory and
roll-out, and mobile and low-bandwidth
systems are roughly solved.

State of Software Tools

Inventory
Deploy

Analyze

M
at

u
r
it
y

Deployment

Unicenter
Tivoli

ZenWorks (etc)

The Real Problems

Patches are beta software
Intense pressure to roll out beta software
Poor data about patches
Conflict between IT & IT Security
Patches which can’t roll back

Uptime vs. Security

IT is rated on measured uptime
Every admin knows patching can break
things, require reboots

Security is rated on break-ins
Need to deploy patches to prevent

Huge fights come from different priorities.

Where We Are

Why patch?
Why is patching so painful?
What makes it easier?
Thinking about risk management
How can we get out of the rat race?

Reconciling The Views

Patch risk falls with time
Exploit risk grows with time
Can we put numbers on them?
Can we engage in a risk trade-off?

Timing the Application of Security
Patches for Optimal Uptime

Timing the Application...

 Steve Beattie, Seth Arnold, Crispin Cowan,
Perry Wagle, Chris Wright, and Adam
Shostack.
Presented at the USENIX 16th Systems
Administration Conference (LISA 2002)
http://www.homeport.org/~adam/time-to-patch-usenix-lisa02.pdf

(Don’t copy down the URL: Google finds my homepage, that’s
bullet #7)

Where We Are

Why patch?
Why is patching so painful?
What makes it easier?
Thinking about risk management
How can we get out of the rat race?

Risk Management

You can do this at home!
Easy math leads to useful results
Cost to deploy, cost to fix problems
(security or broken patch)
Goal is to move away from argument and
worry
Consider Security Risk, Patch Risk,
Business Impact

Security Issues

Patch criticality
Software Vendor
CERT metrics (ADDED: CVSS)
CNN

Mitigating controls
Firewalls
Configurations

Patch Issues

How big is the patch?
How many issues does it fix?
Can it be backed out?
Does it require a reboot?
Testing (internal, external, web & lists)

Business Issues

What’s the business function of the system?
Is there an impending deadline?
What’s your MTTR?

(Mean Time To Repair)

Making it concrete

Know your cost to deploy a patch
Know your cost of downtime
Estimate the risk of attack

Some sample numbers

1,000 node network with manual patching
by $100 techies, at 1 hour/node:
$100,000 to deploy a patch
So what do you do if:

Attack that would cost you $1,000,000
Attack that would cost you $105,000
Attack that would cost you $25,000

The $105,000 question

Expected 5% ROI on cash
Didn’t specify time

Alternate activities?
Cost of capital/ROI?

Why patch?
Why is patching so painful?
What makes it easier?
Thinking about risk management
How can we get out of the rat race?

Better Patch Mgmt SW

Research and risk data
Workflow
Testing support
Risk Management support

More Managable Deployments

Use security software (Okena, Immunix,
Sana, etc) to stop classes of attack
Use software to deploy and manage systems
Work to increase MTBF, decrease MTTR

More Secure Software

The core problem is that security is not a
buying criteria
Make it one
Push your vendor to discuss and then
improve their software processes:
Design, Development, Testing, Deploy

Bug (and software)
Development

How To Move?

It’s actually worse than that
That’s a graph for a single program
You deploy lots of programs

How To Get There

Better software tools
Internal, external

Better Deployment tools
Security
Operations

Where The Tools Fit

Static Checkers

Work with source code
Lots of different languages
Results generally easier to fix

They’re associated with lines of code
High false positive rates
Find “sins of commission” like strcat()
Fast

Dynamic Checkers

Work on binary code
Never wonder if the optimizer was too
clever

Find “Sins of Omission” like SQL injection
Slow! (Can be hours or days)

Language Selection

Some languages seem to be more prone to
security flaws

C, PHP
We may not have found the classes of flaws
in Java, C#
New classes keep showing up (integer
underflows, etc)

Adding Resilience to Code

How to
deploy
operate

Buggy code more securely

Free UNIX techniques

chroot/jail
Unprivileged daemon accounts

Painful if you need fast code on port 80
Free security enhanced OSes:

OpenBSD, SELinux

More advanced tools

OS hardening tools
Immunix subdomain
Sana kernel enhancements

Application hardening
Stackguard & company
(Recompile vs kernel modules)

Issues with Hardening Tools

How to measure their effectiveness
Configuration effort
Costs (percieved and real)

Cash up front
Speed
Supportability + Vendor finger pointing

Selling Your Boss

Or, Security folks are from Mars,
businesspeople are from Wheaton

How You Buy Software

Functionality, supportability, price
Can you get security in there?
Probably requires being able to get lots of
complexity into a 1-5 score (or somesuch)
The above can be used for that

Sample Scoring

0-1 point for a good language
0-1 point for documented use of tools to
check code
0-1 point for unprivileged, chroot install
0-1 point for logging
0-1 point for local analysis

Deployment Budgets

Cash for wires, hubs, power, air
Where does security fit?
What’s the real cost of a failure?

(Hint, its not $1m, unless you’re a large
bank)

Deployment Business Cases

Cost of operations with and without tool X
Cost of special events:

Patching
Breakins
Worms

Frequency of special events

Summary

We’ll always have patches to deploy
We can build rational decision processes
We can use better tools
We can push vendors to sell better SW

